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The cell membrane regulates many physiological processes including cellular communication,
homing and metabolism.  It  is  therefore  not  surprising  that  the  composition  of  the  host  cell
membrane  is  manipulated  by  intracellular  pathogens.  Among  these,  the  human  oncogenic
herpesviruses Epstein–Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV)
exploit  the  host  cell  membrane to  avoid  immune surveillance and promote  viral  replication.
Accumulating evidence has shown that  both EBV and KSHV directly  encode several  similar
membrane-associated proteins, including receptors and receptor-specific ligands (cytokines and
chemokines), to increase virus fitness in spite of host antiviral immune responses. These proteins
are expressed individually at different phases of the EBV/KSHV life cycle and employ various
mechanisms to manipulate the host cell membrane. In recent decades, much effort has been made
to address how these membrane-based signals contribute to viral tumorigenesis. In this review, we
summarize and highlight the recent understanding of how EBV and KSHV similarly manipulate host
cell membrane signals, particularly how remodeling of the cell membrane allows EBV and KSHV to
avoid host antiviral immune responses and favors their latent and lytic infection.
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INTRODUCTION

Mammalian cells are encased by a selectively permeable
membrane, which is composed of lipids and proteins and
separates the cellular cytoplasm from its surroundings
(Goldberg and riordan, 1986). The cell membrane pro-
teins usually contain carbohydrate residues directed to-
wards the exterior and are important for the interaction
of cells with each other and with external proteins
(Goldberg and Riordan, 1986). To maintain proper

homeostasis, the protein and lipid components of the cell
membrane are finely controlled in a dynamic and re-
sponsive state. It has been widely demonstrated that the
external (plasma) membrane is often damaged in a wide
range of human diseases, which compromises the integ-
rity of the cells (Goldberg and Riordan, 1986). Due to
the host cell membrane plays a crucial role in defense,
particularly serving as an initial barrier for pathogen in-
fection, it has been a target frequently hijacked by patho-
gens to invade host cells (Chakraborty et al., 2012). In
virus-associated diseases, it is also very common for
changes in the composition and function of proteins
within the host cell membrane to occur during viral
pathogenesis (Chakraborty et al., 2012).

Epstein-Barr virus (EBV or HHV-4) and Kaposi’s
sarcoma-associated herpesvirus (KSHV or HHV-8) are
members of the human γ-herpesvirus subfamily and are
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lymphotropic viruses in natural or experimental settings
(Epstein et al., 1964; Chang et al., 1994). Like other
herpesviruses, they are capable of establishing latent
infection in host cells and reactivating for lytic replica-
tion under certain conditions. EBV has been linked with
many diseases in humans, including infectious mononu-
cleosis (IM), Burkitt’s lymphoma (BL), nasopharyngeal
carcinoma (NPC), Hodgkin’s disease (HD) and T-cell
lymphoma; while KSHV has been associated with
Kaposi’s sarcoma (KS), primary effusion lymphoma
(PEL) and multicentric Castleman’s disease (MCD)
(Cesarman et al., 1995; Mesri et al., 2010). It has been
documented that EBV can infect B cells, epithelial cells
and some T cel ls  (Spear  and longnecker,  2003;
Calderwood et al., 2007). In contrast, it seems that
KSHV has a broader range of cell tropism and is able to
infect B cells, endothelial cells, epithelial cells and cells
of monocyte or macrophage lineage in vitro (Veettil et
al., 2014). Although the cell tropism and pathogenesis of
these two oncogenic viruses differ, increasing evidence
has shown that they exploit similar strategies to invade
host cells during their latent and lytic life cycles, particu-
larly in induction of host cell proliferation, transforma-
tion and tumorigenesis, and escape from host antiviral
responses (Riethmüller et al., 2006).

Given the important roles of the host cell membrane in
cellular metabolism, homing, communication and espe-
cially immune surveillance, it is not surprising that both
EBV and KSHV have evolved specialized proteins that
manipulate the composition and function of host cell
membrane proteins to avoid host antiviral immune
responses and establish persistent infection (Chazal and
Gerlier, 2003; Heaton and Randall, 2011; Mazzon and
Mercer, 2014). Deciphering how EBV and KSHV hijack
the host cell membrane will help to provide new insights
into understanding the mechanisms of cell transforma-
tion and oncogenesis induced by other tumor-inducing
viruses. Indeed, open reading frame (ORF) analysis from
viral genome sequences has revealed that both EBV and
KSHV encode several important membrane-associated
proteins, which include regulators of cell transformation
and signaling, modulators or mimics of cellular recep-
tors, and viral cytokines and chemokines, to directly or

indirectly take over host cell membrane signaling (Fig-
ure 1). In this review, we summarize the functional simi-
larities of the viral proteins encoded by EBV or KSHV
for manipulating the composition of host cell mem-
branes and signaling for viral pathogenesis, and high-
light the recent evidence for how EBV and KSHV simi-
larly or differently utilize these membrane-associated
proteins to facilitate their latent and lytic infection.

UNIQUE VIRAL MEMBRANE PROTEINS FOR
CELL TRANSFORMATION AND SIGNALING

Increasing evidence indicates that the herpesviruses,
including EBV and KSHV, usually encode several pro-
teins for cell transformation and signaling to protect and
preserve the virus-infected cells. Among these proteins
are unique viral membrane proteins that have no amino
acid sequence similarity to cellular proteins. For in-
stance, Latent membrane protein 1 (LMP1) and K1 are
viral oncoproteins encoded by EBV and KSHV, respec-
tively. Although these two genes have highly divergent
sequences, the function of the gene products seems to be
conserved.

Extensive studies have revealed that the LMP1 pro-
tein contains six transmembrane-spanning domains and a
200 amino acid cytoplasmic domain at the carboxyl ter-
minus (Wang et al., 1985; Wang et al., 1988). The
carboxyl terminus of LMP1 can be divided into two
functional motif regions–CTAR1 and CTAR2. LMP1 is
expressed in latently infected B cells and can be upregu-
lated during the lytic replication cycle in epithelial and B
cells. It has been shown that LMP1 can transform fibro-
blasts in vitro and mimics the B-cell activation antigen
CD40. Similar to CD40 and other receptors, CTAR1 and
CTAR2 in the cytoplasmic domain of LMP1 are associ-
ated with several essential proteins including the tumor-
necrosis factor (TNF) receptor-associated molecules
TRAF and TRADD, for activation of the nuclear factor
(NF)-κB pathway and for EBV-induced immortalization
of B lymphocytes (Izumi et al., 1997). However, distinct
from CD40, the transduction of LMP1 signals is not due
to extracellular ligands or cross-linking but is caused by
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multimerization of LMP1 through its transmembrane
domains, which mimics ligand-induced CD40 receptor
aggregation (Figure 2A). Moreover, this multimerization
leads to constitutive activation of NF-κB, cJun N-terminal
kinase (JNK) and phosphoinositide 3-kinase (PI3K)
activity, as well as induction of expression of many
downstream genes including Bcl2 for cell survival
(Hatzivassiliou et al., 1998). Hence, LMP1 mainly func-
tions as a B-lymphocyte CD40 receptor to contribute to
EBV-infected cell growth, survival and transformation.
Interestingly, recent studies in animal models have
shown that EBV with LMP1 deficiency can still estab-
lish long-term viral latency in vivo, but is unable to
induce lymphomas (Gujer et al., 2015; Ma et al., 2015),
and LMP1 likely supports the survival of EBV-infected
cells in a competitive environment that favors differenti-
ation into memory B cells rather than plasma cells
(Thorley-lawson et al., 2013). Importantly, LMP1 is also
able to promote cell migration and globally regulate
chromatin and expression of genes including tumor sup-
pressor DOK1 (Siouda et al., 2014), pro-inflammatory
cytokines (Xiao et al., 2014), and small non-coding RNA
(Motsch et al., 2007; Amort et al., 2015). The fact that
LMP1 is present in exosomes from EBV-infected B cells
and NPC cells indicates that LMP1 not only plays a role
in immune modulation but also in cell communication
and tumor microenvironment homeostasis (Meckes et al.,
2010).

Similar to the LMP1 of EBV, KSHV encodes an ORF
called K1 (Lagunoff and ganem, 1997; Lee et al., 1998b).
In contrast to LMP1, however, K1 is a single transmem-
brane glycoprotein (Figure 2B) (Zong et al., 1999).
Although the amino-terminal domain of K1 is highly
variable, the carboxyl-terminal cytoplasmic domain is
relatively well conserved. Moreover, this carboxyl ter-
minus contains a functional immunoreceptor tyrosine-
based activation motif (ITAM), which is important for
cellular activation (Lee et al., 1998a; Lagunoff et al.,
1999). Interestingly, similar to LMP1, K1 appears to be
constitutively activated independently of the ITAM-
based signal transduction of ligand-receptor interaction
and is also able to transform fibroblasts in vitro (Lagunoff
et al., 1999). In addition, it has also been shown that K1
interacts with several cellular proteins including p85,
Vav, Syk and Akt kinases to activate NF-κB and NF-AT
pathways for cell growth and B-cell activation (Bowser
et al., 2002; Tomlinson and damania, 2004; Tomlinson
and damania, 2008). In contrast with LMP1, K1 has been
shown to induce angiogenesis and cell invasion through
promoting the secretion of vascular endothelial growth
factor (VEGF) and MMP-9 (Wang et al., 2004) and to
transform endothelial cells via activation of the PI3K
pathway (Wang et al., 2006), as well as functioning in
anti-apoptosis and endocytosis (Tomlinson and damania,

2008; Wen and damania, 2010). Interestingly, Damania’s
group showed that K1 was also highly upregulated by
the master regulator of lytic replication, RTA, and in turn
augmented viral lytic replication (Bowser et al., 2006;
Zhang et al., 2016).

VIRAL SIGNAL MODULATORS OF THE B-CELL
RECEPTOR

The activation of immune cells through a receptor at the
membrane surface is important for antiviral immune
responses, and is often targeted by viral infection. During
EBV latent infection, LMP2A is highly expressed in B
cells for impairing B-cell activation (Fruehling and
longnecker, 1997; Caldwell et al., 1998). It has been
demonstrated that LMP2A has 12 transmembrane
domains and short amino-terminal and carboxyl-terminal
domains (Figure 2C). There are three tyrosine-based SH2
domain binding sites located in the amino-terminal cyto-
plasmic region, two of which form a functional ITAM
(Fruehling and longnecker, 1997), which is required for
LMP2A to associate with Lyn, Syk and Csk kinases
(Burkhardt et al., 1992). In contrast to LMP1, although
LMP2A is dispensable for EBV-induced immortaliza-
tion of B cells, it can block normal B-cell receptor
(BCR) signaling in EBV-negative B cells (Miller et al.,
1993). This indicates that LMP2A may play a signifi-
cant role in the establishment and maintenance of EBV
latency (Miller et al., 1994; Miller et al., 1995). Many
regulatory functions of LMP2A on host cell prolifer-
ation, activation, migration, transformation and survival
have been reported and were recently summarized by
Cen and Longnecker (2015). For instance, the recruit-
ment of Syk and Akt kinases is required for LMP2A to
transform and increase migration of epithelial cells,
which relies on its ITAM motif (Lu et al. ,  2006;
Fotheringham et al., 2012; Fukuda and Kawaguchi,
2014). In LMP2A transgenic mice, LMP2A could also
activate constitutive signals for B cell survival through
ITAM/Syk, Ras/PI3K/Akt and mitogen-activated pro-
tein kinase (ERK/MAPK) pathways (Merchant et al.,
2000; Portis and Longnecker, 2004; Fukuda and
Longnecker, 2005; Anderson and longnecker, 2008). In
addition, LMP2A can block the expression of LMP1 to
indirectly inhibit interleukin (IL)-6 expression through
the Janus kinase/signal transducers and activators of
transcription (JAK-STAT) pathway (Stewart et al.,
2004), and can drive cell progression by reducing the
expression level of p27 (Fish et al., 2014). Furthermore,
it has been shown that LMP2A is highly expressed in the
EBV latency types II and III, including EBV-immortalized
B-lymphoblastoid cell lines (LCLs), Hodgkin’s and non-
Hodgkin’s lymphoma, other lymphoproliferative malig-
nancies, as well as NPC and gastric carcinoma (Qu et al.,
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Figure 2.  Structure of the host cell membrane proteins encoded by EBV and KSHV. (A–F) LMP1 and K1, LMP2A and
K15, and BILF1 and vGPCR are encoded individually by EBV and KSHV, respectively. Interactions with cellular part-
ners and activation of cellular signaling pathways are indicated.
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2000; Fox et al., 2010; Han et al., 2012). These discover-
ies indicate that LMP2A may provide a potential thera-
peutic target for the treatment of EBV-associated can-
cers.

In the equivalent position to the EBV LMP2A, KSHV
encodes a distinct ORF named K15 (Glenn et al., 1999).
It has been demonstrated that K15 contains 4–12 trans-
membrane domains and a short amino-terminal cytopla-
smic domain (Figure 2D). In contrast to LMP2A, K15 is
weakly expressed in KSHV-latently infected primary
effusion lymphoma (PEL) cells, while levels are signifi-
cantly increased upon stimulation with chemicals such as
12-O-tetradecanoyl-phorbol-13-acetate (TPA). Similar to
LMP2A, different variants of K15 exist; however, the
signaling motifs (including SH2 and SH3 binding motifs
and a YASIL sequence) located in the cytoplasmic
domain of K15 are highly conserved, and the tyrosine
residue within the putative SH2 binding motif is con-
stitutively phosphorylated. Like LMP2A, K15 is capable
of blocking BCR signal transduction, although it is
unable to elicit cellular signal transduction upon anti-
body stimulation. This could explain to a certain extent
why LMP2A but not K15 is highly expressed during viral
latency. Interestingly, K15 was exclusively found to
induce angiogenesis and invasiveness of endothelial cells
(Bala et al., 2012; Gramolelli et al., 2015). In addition, it
was demonstrated that several intracellular signaling path-
ways including MAPK and NF-κB were activated by K15
to induce inflammation and angiogenesis (Brinkmann
et al., 2003; Brinkmann et al., 2007; Wang et al., 2007;
Pietrek et al., 2010).

VIRAL MIMICKERS OF THE G-PROTEIN-
COUPLED RECEPTOR

In addition to encoding a viral modulator of host cell
membrane signaling, EBV and KSHV also express pro-
teins that mimic host cell membrane receptors. G-pro-
tein-coupled receptors (GPCRs) are a diverse family of
membrane receptors that can be activated by a variety of
ligands (Rosenbaum et al., 2009). All GPCRs contains
seven transmembrane domains and couple to hetero-G-
proteins in response to receptor activation (Rosenbaum
et al., 2009). EBV and KSHV, as oncogenic members of
the herpesvirus family, are particularly successful at
evading or subverting the host immune response and
have been shown to hijack GPCRs to favor their latent
and lytic infection. In KSHV, the viral mimicker of cel-
lular GPCR (vGPCR) is encoded by ORF74 (Figure 2F)
and displays constitutive activity correlated with onco-
genesis in vitro and in vivo (Arvanitakis et al., 1997; Bais
et al., 1998; Jham and montaner, 2010). In transgenic
mice, vGPCR was shown to activate MAPKs, phospholi-
pase C (PLC), PI3K and Akt (Smit et al., 2002), as well

as NF-κB via the PI3K and Akt pathway (Pati et al.,
2001), and subsequently release IL-6 and stimulate VEGF
production in both paracrine and autocrine manners for
cell growth and survival (Pati et al., 2001).

EBV also encodes a single viral GPCR, called BILF1,
in the lytic replication phase (Figure 2E). Similar to
vGPCR from KSHV, BILF1 is also able to transform
cells in vitro and leads to tumor formation in vivo
(Lyngaa et al., 2010), which may be dependent on a pat-
tern of constitutive signaling through the GαI-activated
pathway that in turn contributes to viral lytic replication
(Paulsen et al., 2005). In the context of immune evasion,
it has been shown that BILF1 can constitutively inhibit
the phosphorylation of protein kinase R (PKR) (Beisser
et al., 2005), and can activate transcriptional factors of
NF-κB and NF-AT to prevent the host cell antiviral re-
sponse (Spiess et al., 2015). In addition, BILF1 reduces
the levels of major histocompatibility complex (MHC)
class I at the cell surface through the lysosomal degrada-
tion pathway (Zuo et al., 2009). Further studies have re-
vealed that this function of BILF1 is dependent on the
EKT signal motif located in its cytoplasmic tail (Zuo et
al., 2011; Griffin et al., 2013). Similar to other viral
GPCRs, BILF1 is able to hetero-oligomerize with other
chemokine receptors like CXCR4, although BILF1 was
previously demonstrated to be an orphan GPCR
(Nijmeijer et al., 2010). These findings indicate that both
GPCR homologs, encoded by EBV and KSHV, have
highly similar functions in redirecting cellular GPCR
signaling to favor for viral lytic replication.

VIRAL CYTOKINES AND CHEMOKINES

In addition to encoding their own viral membrane-asso-
ciated proteins, it has been revealed that the genomes of
EBV and KSHV also encode one or more viral cy-
tokines or chemokines (Figure 1), allowing them to fully
take over host membrane protein signaling. These viral
genes have distinct homology to their cellular counter-
parts and could modulate cell signaling pathways to pro-
mote survival of the infected cell and escape from host
antiviral immune surveillance. For example, EBV en-
codes a viral IL-10 (vIL-10) cytokine that is homolo-
gous to human IL-10 (Figure 3, left panel) and is ex-
pressed during primary or reactivated EBV infection
phases for induction of B-cell transformation and growth
(Miyazaki et al., 1993; Stuart et al., 1995; Bejarano and
masucci, 1998). To further prevent activation and recog-
nition of T cells, vIL-10 has been found to downregulate
the expression of the transporter protein TAP1, which as-
sociates with MHC class II antigens presented on mono-
cytes, macrophages and B cells with EBV infection (de
waal malefyt et al., 1991; Zeidler et al., 1997; Jochum et
al., 2012), and also block interferon (IFN)-γ synthesis for
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enhancing EBV-infected B cell survival (Swaminathan et
al., 1993; Suzuki et al., 1995). Interestingly, it has been
shown that vIL-10 is highly conserved in various EBV
isolates from gastric carcinomas and NPCs (Kanai et al.,
2007; Chao et al., 2011) and may contribute to acute in-
fection of permissive host cells by facilitating survival
and dissemination of EBV-infected cells as seen in a
murine herpesvirus model (Lindquester et al., 2014).

Although KSHV does not encode an ORF similar to
the EBV vIL-10, a viral cytokine named vIL-6 is
encoded. It has been demonstrated that vIL-6 is secreted
from B cells after KSHV infection (Moore et al., 1996;
Neipel et al., 1997; Nicholas et al., 1997) and can induce
cellular IL-6 expression to promote cell proliferation of
PEL cells (Mori et al., 2000) and block the antiviral ef-
fects of IFN-α (Chatterjee et al., 2002). However, dis-
tinct from cellular IL-6, vIL-6 only requires the gp130
subunit instead of both gp130 and IL-6α receptors for
signal transduction (Figure 3, middle panel) (Molden et
al., 1997). Unexpectedly, in the context of KSHV-associ-
ated diseases, vIL-6 is highly expressed in PEL and
MCD cells (Parravicini et al., 1997; Jones et al., 1999),
but rarely in KS cells (Staskus et al., 1999; Parravicini et
al., 2000).

Since chemokines play a profound role in leukocyte
trafficking and development of adaptive immune re-
sponses, in addition to cytokines, KSHV also encodes
several viral gene products with homology to cellular
chemokines, known as vCCL1, vCCL2 and vCCL3 (Fig-
ure 3, right panels) (Boshoff et al., 1997). Unlike their
cellular counterparts, vCCL1 and vCCL2 bind effi-
ciently to the CCR8 receptor (Sozzani et al., 1998), while
vCCL3 activates the CCR4 receptor for signal transduc-
tion and chemotaxis in monocytes (Stine et al., 2000). It

has been also proposed that vCCL2 and vCCL3 may
play an immunomodulatory role in directing inflamma-
tion from the Th1 to Th2 type response for KSHV im-
mune evasion (Sozzani et al., 1998; Singh et al., 2004).
Recent studies further showed that vCCL2 is the only
one of the four cytokine/chemokines encoded by KSHV
that binds to natural killer (NK) cells through two differ-
ent receptors, CX3CR1 and CCR5, which inhibits the
migration of activated NK cells (Yamin et al., 2013). In
contrast to KSHV, no viral counterpart of cellular
chemokines in the EBV genome has been revealed so
far. This indicates that there is a significant difference
between EBV and KSHV in manipulating host cytokine
and chemokine signals, and could explain why EBV and
KSHV have different cell tropisms for infection, albeit
both of them infect B cells.

DISCUSSION

Recent progress in the tumor virology of both EBV and
KSHV has given rise to important concepts relating to
changes in the composition and function of host cell
membrane proteins. It has been demonstrated that both
EBV and KSHV have evolved a diverse array of viral
genes to manipulate the host cell membrane, which en-
code unique viral proteins, viral homologues of cellular
proteins and proteins involved in cell membrane signal-
ing. The strategies utilized by these two viruses lead to
deregulation of normal cellular pathways including apop-
tosis, antiviral immune surveillance and arrest in cell
growth. As both EBV and KSHV have tropisms for dif-
ferent cell types, a certain subset of viral proteins lo-
cated in the cell membrane might function in a coopera-
tive manner to aid virus survival in different cellular en-

Figure 3.  Schematic representation of the cytokines/chemokines encoded by EBV and KSHV and their related recep-
tors and downstream signaling events.
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vironments, to ensure a life-long persistent infection
within the host cells. In view of the fact that individual
proteins of EBV or KSHV may or may not appear con-
currently, the strategies that are used to subvert the host
cell antiviral immune response and override cell-cycle
checkpoints for cell growth or survival are often con-
cordant. For instance, LMP1, encoded by EBV during
latency, has a similar effect on cell growth as K1 en-
coded by KSHV during lytic replication; LMP2A has a
similar function as K15 on inhibition of BCR activation;
and the viral cytokines vIL10 and vIL6 encoded indi-
vidually by EBV and KSHV promote B-cell prolifer-
ation. These phenomena support the notion that mainte-
nance of viral latency with intermittent periods of pro-
ductive viral replication is very common. Thus, the ma-
nipulation of the host cell membrane by viral proteins
probably contributes to the progression and develop-
ment of neoplastic diseases associated with EBV or
KSHV infection.

In this review, we have discussed the composition and
functions of host cell membrane proteins including
homologs of receptors and cytokines. These viral pro-
teins elicit many of the same phenotype as their cellular
counterparts and therefore provide biological function in
virus-infected cell types that do not normally express the
corresponding cellular proteins. Our current knowledge
about the hijacking of host cell membrane proteins and
signaling by human γ-herpesviruses illustrates interest-
ing similarities between proteins with apparently diver-
gent functions at different stages of the viral life cycle.
Despite similarities in the signaling pathways engaged
by both EBV and KSHV, it is still very hard to answer
why the same signaling pathway may result in transfor-
mation when targeted by some viral proteins but not oth-
ers. Expression of membrane receptors, cytokines and
chemokines during latency and lytic replication appears
to be associated with an essential or at least contributory
role in viral tumorigenesis, probably through mimicking
physiological signals required for the survival of im-
mune B or T cells.

The most interesting property that these host mem-
brane proteins share is their ability to self-oligomerize
for constitutive activation. However, it remains largely
unclear whether oligomerization of these membrane pro-
teins is caused by endogenous or exogenous ligands.
Although it has been shown that no matter self- or
ligand-induced oligomerization and interaction with host
cellular factors, these viral transform membrane proteins
could be adopted and modified cellular pathways for
transforming host cells. In addition, both EBV and
KSHV have also been demonstrated to manipulate the
host cell membrane through deregulating the expression
of both chemokines and cytokines or their receptors. For
instance, EBV can induce expression of IL-8 and MIP-1
in human neutrophils (Mccoll et al., 1997); KSHV uti-
lizes microRNA to reduce the production of inflamma-

tory-response cytokines (Abend et al., 2012) and dynam-
ically regulate production of IL-6, TNF-α and MIP1α in
dendritic cells after KSHV primary infection (Hensler et
al., 2009). This strategy is utilized to interact with other
molecules that could directly impair the activation of
host cell membrane receptors for viral pathogenesis. In
conclusion, the functional elucidation of these cell mem-
brane-associated proteins will provide potentially effi-
cient strategies against EBV or KSHV-associated dis-
eases.
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