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Activation of specific sets of protein kinases by intracellular signal molecules has become more
and more apparent in the past decade. Phosphorylation, one of key posttranslational modification
events, is activated by kinase or regulatory protein and is vital for controlling many physiological
functions of eukaryotic cells such as cell proliferation, differentiation, malignant transformation,
and signal transduction mediated by external stimuli. Moreovers, the reversible modification of
phosphorylation and dephosphorylation can result in different features of the target substrate
molecules including DNA binding, protein-protein interaction, subcellular location and enzymatic
activity, and is often hijacked by viral infection. Epstein-Barr virus (EBV) and Kaposi’s sarcoma-
associated herpesvirus (KSHV), two human oncogenic gamma-herpesviruses, are shown to tightly
associate  with  many  malignancies.  In  this  review,  we  summarize  the  recent  progresses  on
understanding  of  molecular  properties  and  regulatory  modes  of  cellular  and  viral  proteins
phosphorylation influenced by these two tumor viruses, and highlight the potential therapeutic
targets and strategies against their related cancers.
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INTRODUCTION

Protein phosphorylation is a reversible post-translational

modification (PTM) that occurs at specific residues
as serine, threonine, tyrosine, and involves a series of
sequence-specific kinases, phosphatases and recognized
proteins. Phosphorylation signaling is a critical process
for its ability to modulate cellular protein activities, alter
protein folding, and initiate or inhibit interactions with
other proteins. Importantly, phosphorylation plays a
significant role in formation and development of cancer
through alteration of oncogenic kinase signaling (Smith
et al., 2012), transcriptional regulation (Morin et al.,
1997), and TP53 activity (Liu et al., 2004). The reversible
phosphorylation of proteins regulates almost all aspects
of cell life cycle, while abnormal phosphorylation is a
cause or consequence of many diseases. It has been
demonstrated that mutations in particular protein kinases
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and phosphatases give rise to a number of disorders, and
many naturally occurring toxins and pathogens exert
their effects by altering the phosphorylation states of
intracellular proteins (Cohen, 2001). This includes amino
acid substitutions on kinases or phosphatases that directly
interrupt the stability and/or the function of the kinase or
phosphatase, resulting in changes of target protein phos-
phorylation. The regulators of kinase or phosphatase can
also indirectly play an effect on alteration of target protein
phosphorylation (Stephens et al., 2005). Interestingly,
increasing evidence has shown that disruptions of phos-
phorylation sites of key proteins are associated with
many cancers (Alt et al., 2000), and phosphorylation can
be pharmacologically targeted with multiple approved
therapies for cancer treatment (Tiacci et al., 2011). For
instance, loss of phosphorylation is causatively impli-
cated in nuclear accumulation of cyclin D1 in esophageal
cancer and generally increased malignancy potential
(Benzeno et al., 2006). Another example shows that
activation of Akt kinase by phosphorylation is tightly
associated with cell-cycle progression (Liu et al., 2014).
Thus, phosphorylation events are highly potential target
to be invaded by viral infection for viral replication and
propagation.

Epstein-Barr virus (EBV, or human herpesvirus-4,
HHV-4) and Kaposi’s sarcoma-associated herpesvirus
(KSHV, or human herpesvirus-8, HHV-8), two mem-
bers of the gamma-herpesvirus subfamily of human
herpesviruses, are double-stranded DNA tumor viruses
with genome size range within 100 to 200 kbp, and are
considered as the major contributors to lymphomagenes-
is in the immune-deficient humans. Importantly, these
two gamma-herpesviruses are accountable for several
lymphoproliferative and neoplastic disorders. For ex-
amples, EBV is etiologically associated with infectious
mononucleosis, Burkitt’s lymphoma (BL), nasopharyn-
geal carcinoma (NPC), Hodgkin’s disease, hemophago-
cytic lymphohistiocytosis syndrome and some gastric
cancers (Jha et al., 2016). In contrast, KSHV is associ-
ated with Kaposi’s sarcoma (KS), and primary effusion
lymphoma (PEL) and multicentric Castleman’s disease
(MCD) (Parravicini et al., 2000). Upon viral infection, it
has been shown that a number of cellular signaling path-
ways involving in phosphorylation and dephosphoryla-
tion events are stimulated (Brinkmann and Schulz,
2006). This review will focus on the human oncogenic
herpesviruses EBV and KSHV, and address the recent
progress on how these two tumor viruses hijack the cel-
lular protein phosphorylation signaling for gene expres-
sion, cell growth and immune escape, as well as high-
light their potential therapeutic targets and strategies
against the viral related cancers.

VIRAL PROTEINS IS PHOSPHORYLATED BY
CELLULAR AND VIRAL KINASES

The phosphorylation of target proteins induced by viral
infection has been shown to play major impacts on viral
invasion, replication, and cytotoxicity of the host cells.
The addition or removal of a negatively charged phos-
phate group by kinases or phosphatases has been
reported to regulate target protein’s stability, activity as
well as interactions with other cellular and viral proteins
(Jakubiec and Jupin, 2007). Once specific phosphoryla-
tion sites of viral proteins are identified, mutational an-
alyses will reveal the potential phenotypic effects of such
viral protein’s phosphorylation site. In many cases, mul-
tiple kinases are able to phosphorylate the same protein.
Henceforth, by targeting different kinase profiles, a virus
could have the ability to expand its host and cellular
tropism, and to infect different species and cell types. On
the other hand, kinase redundancy also provides multiple
opportunities for a viral protein to be phosphorylated,
ensuring the chance for the phosphorylated protein to
induce pathogenic effects on the cell. The phenomenon
of kinase redundancy has been found to exist in a number
of viruses including EBV and KSHV. For example, both
the SM protein (an early stage protein of EBV lytic repli-
cation) and latent membrane protein LMP1 can be phos-
phorylated by casein kinase II (CKII) (Cook et al., 1994;
Chi et al., 2002). During cell mitosis, the latent antigen
EBNA2 is phosphorylated at Ser 243 by cdc2/cyclin B1
kinase for activation of the Cp promoter within EBV ge-
nome (Yue et al., 2006). Interestingly, the EBV nuclear
antigen leader protein EBNA-LP is not only activated by
cellular kinase cdc2 but also viral kinase BGLF4 for phos-
phorylation at Serine 35 (Kato et al., 2003). LMP2A is
able to induce phosphorylation at Ser 15 and Ser 102 in
vitro by mitogen-activated protein kinase MAPK in the
control of viral latency (Panousis and Rowe, 1997). Al-
though tyrosine phosphorylation of LMP2A occurs in
both B lymphocyte and epithelial cells, the CSK (a nega-
tive Src regulator) instead of Src family kinase (LCK,
Lyn and FYN) is shown to phosphorylate LMP2A in
epithelial cells (Burkhardt et al., 1992; Scholle et al.,
1999). In contrast, in regard to how KSHV utilizes cellular
kinase to modulate its own proteins, it has been found
that K-bZIP (expressed during lytically infected B cells)
was phosphorylated on Thr 111 and Ser 167 by CDK1
and CDK2, respectively (Polson et al., 2001). Moevoer,
the latent protein Kaposin B is phosphorylated by activa-
tion of p38 MAPK for induction of proinflammatory cy-
tokines and blocking cytokine mRNA decay (McCormick
and Ganem, 2006).

In addition to utilize cellular kinases, gamma-herpes-
viruses also encode their own kinases to phosphorylate
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target proteins (Asai et al., 2006). Interestingly, most of
viral kinases not only phosphorylate other viral and cel-
lular proteins, but also autophosphorylated themselves,
which facilitates viral replication or production within
the host cells (Kawaguchi and Kato, 2003). For instance,
the EBV-encoded BGLF4 is a protein kinase, and is able
to phosphorylate a number of viral proteins including
BZLF1 (Asai et al., 2006), EA-D (Chen et al., 2000), and
EBNA2 during the latency (Kato et al., 2003). Surpris-
ingly, during the viral lytic replication, BGLF4 also phos-
phorylates EBNA-2 in a manner similar to the cellular
kinase cdk1, and the hyperphosphorylation of EBNA-2
will in turn inhibit its normal ability to transactivate the
EBV LMP1 promoter, and eventually lead to induction
of EBV lytic replication (Yue et al., 2005). This indic-
ates it is not absolutely that phosphorylation could have
clear-cut effects on viral life cycles. Similarly, KSHV en-
coded ORF36 protein is also a serine protein kinase and
is able to inhibit cell spreading and FAK activation through
interacting with FAK and blocking its tyrosine phos-
phorylation (Park et al., 2000; Park et al., 2007).

Autophosphorylation of cellular kinases can occur inter-
molecularly or intramolecularly, which will potentially
alter the protein conformation, and positively or negat-
ively regulate the catalytic activity of the kinase (Wang
and Wu, 2002; Pickin et al., 2008). In addition, phos-
phorylation of a target kinase can also influence its inter-
action with other proteins. For example, tyrosine phos-
phorylation of specific residues within Src-family
kinases is required for Src to interaction with proteins
carrying SH2 domains (Pawson, 1995; Thomas and
Brugge, 1997). For herpesvirus, in addition to HCMV
UL97 (He et al., 1997) and HSV-1 UL13 (Cunningham
et al., 1992), EBV encoded BGLF4 has also presented an
ability to autophosphorylate itself (Kato et al., 2001), al-
beit the full effects of these autophosphorylations on
protein activity remains to be further investigation. More-
over, it is still unknown whether autophosphorylation of
viral kinases will induce the same effect, such as regulat-
ing catalytic activity and recruiting other proteins for inter-
action, as the autophosphorylation of cellular kinases.

PHOSPHORYLATION EVENT REGULATES
VIRAL TRANSCRIPTION AND TRANSLATION

In the view of the fact that animal viruses do not encode
their own components of the translational machinery, it
has been considered that the host translation factors play
critical roles in viral pathogenesis. Viruses not only effec-
tively modulate the array of factors required for polypep-
tide production, but also appropriately control the complex
regulatory circuits that associate with their activity. Like
so many other biological regulatory events, this is also
achieved by altering the phosphorylation state of the target

molecules. To regulate viral gene expression at transcrip-
tional and post-transcriptional levels, ORF57 (or its coun-
terpart) is encoded by most of herpesvirus (particularly
KSHV), and is phosphorylated by CK2 in the presence
of the complex with heterogeneous nuclear ribonucleo-
protein K (hnRNP K) (Malik and Clements, 2004).

In addition, PKR is a serine/threonine kinase that in-
volves in regulation of the phosphorylation of eukaryotic
translation initiation factor 2 (eIF-2α). During viral lat-
ent infection, KSHV LANA2 blocks PKR-induced phos-
phorylation of eIF-2α to counteract the PKR-mediated
inhibition of protein synthesis and apoptosis (Esteban
et al., 2003). Furthermore, KSHV vIRF-2 also physic-
ally interacts with PKR and consequently inhibits its
autophosphorylation and phosphorylation of PKR sub-
strates of histone 2A and eukaryotic translation initiation
factor 2 (eIF-2α) (Burysek and Pitha, 2001). Thus, the
cooperation effect of vIRF-2 and LANA2 on PKR-mediated
translational regulation may play a role in the viral main-
tenance and malignancy.

PHOSPHORYLATION–MEDIATED VIRAL
MANIPULATION OF DNA DAMAGE RESPONSE
AND CELL PROLIFERATION

The DNA damage response (DDR) pathway has evolved
to recognize viral DNA entering the nucleus of host cells
during viral infection, which involve in phosphorylation
of representative DDR-associated proteins, such as ATM
and γH2AX (Figure 1). During de novo infection of pri-
mary endothelial cells, KSHV activates phosphorylation
of ATM and H2AX for establishing viral latency (Singh
et al., 2014). Further studies indicate that KSHV encoded
LANA interacts with H2AX and induces phosphorylation

 

Figure 1. A schematic illustrating γ-herpesvirus hijacks
DNA damage response to induce cell proliferation.
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of γH2AX at serine 139 for episome persistence (Jha
et al., 2013). Similarly, EBV also modulates the activation
of DDR signaling during its lytic cycle, through Zta-
mediated phosphorylation of ATM and γH2AX (Wang’
ondu et al., 2015). However, overexpression of the latent
proteins LMP1 and LMP2A encoded by EBV in the EBV
negative NPC cells could cooperatively suppress activa-
tion of γH2AX phosphorylation at Serine 139 in response
to genotoxic treatment (Wasil et al., 2015). Intriguingly,
the acute infection of murine γ-herpesvirus 68 (MHV68)
in myeloid cells markedly enhance phosphorylation of
γH2AX. Further studies of the mutagenesis screening
identified that the kinase ORF36 encoded by MHV68 is
responsible to induce the γH2AX phosphorylation at
Serine 139, and enhance viral replication by prolonging
S phase (Tarakanova et al., 2007). Moreover, EBV but
no other herpesvirus encoded ORF36 homolog (named
BGLF4) display similar effect (Xie and Scully, 2007).

The oncogenic serine/threonine kinase of Pim-1/2/3
family has been shown to be highly upregulated in a
number of human cancers. Among them, Pim-1 is able to
phosphorylate itself, and there are several substrates have
been identified, including p21, Cdc25A, NuMA for driv-
ing cell proliferation through the transition of G1/S and
G2/M phase, and protecting cell from genotoxin-induced
death (Pircher et al., 2000). In contrast, Pim-2 kinase is
an essential component of the DNA-damage response,
and is an upstream activator of the phosphorylation of
pro-survival/anti-apoptotic factors E2F-1 and ATM
(Zirkin et al., 2013). Overexpression of Pim-2 reduces
γH2AX accumulation in DNA-damaged cells for exert-
ing the protective effect. In the context of KSHV infec-
tion, the latent protein LANA is shown to activate Pim-1
and also act as a Pim-1 substrate (Bajaj et al., 2006), and
the inactivation of LANA phosphorylation at Serine
residues 205 and 206 by Pim-1 and Pim-3 kinases is re-
quired to trigger induction of KSHV lytic replication
(Cheng et al., 2009). Upon EBV latent infection, not
only Pim-1 is required for LMP1-induced cell survival,
but both Pim-1 and Pim-2 are also upregulated, and in
turn enhance the activity of EBNA2 in driving EBV-
induced cell immortalization (Rainio et al., 2005; Kim
et al., 2010). Further studies reveal that other latent antigen
EBNA3C interacts with and stabilizes Pim-1, which
leads to Pim-1-mediated phosphorylation of the Cyclin
inhibitor p21 at the threonine 145 residue for promoting
B-cell proliferation (Banerjee et al., 2014). Surprisingly,
inhibition of ATM/ChK2 instead of ATR/Chk1 will
markedly increase EBV-transformation efficiency of pri-
mary B cells (Nikitin et al., 2010; Mordasini et al., 2017).

PHOSPHORYLATION–MEDIATED VIRAL
ESCAPE OF HOST INNATE IMMUNE RESPONSE

In response to viral infection, the host innate immune

system is triggered. It is well now known that many viral
components can be initially sensed by the host innate
pattern recognition receptors (PRRs), including the toll-
like receptors (TLRs) and the RIG-I-like receptors
(RLRs) to dsRNA, and Z-DNA binding protein 1 (ZBP1),
absent in melanoma 2 (AIM2), or cGAMP synthase
(cGAS) to free exogenous viral DNA in the cytosol. The PRR
signaling pathways could activate some host adaptor
proteins and lead to the induction of IFNs, proinflam-
matory cytokines and chemokines for controlling viral
replication and spreading, even maturation and recruit-
ment of the more specific adaptive immune response.
During the activation of host immune responses, many
viral components and cellular proteins are involved in
regulation of phosphorylation events (Chen and Yuan,
2014; Chang et al., 2016). We will summarize and
highlight how both EBV and KSHV modulate the phos-
phorylation events to escape the host innate immune
response below (Figure 2).

Phosphorylation-mediated sensing of viral
components
The first step to trigger the host innate immune system is
viral components sensed by PRRs, which includes glyco-
proteins and nucleic acids (such as dsRNA or CpG DNA),
and then activating three main transcription factor com-
plexes (IRF-3/IRF-7, NF-κB and ATF2/c-jun) involved
in IFN production. In response to entry of DNA viruses,
cytosolic exogenous double-stranded DNA (dsDNA) is
recognized by and triggers both Z-DNA binding protein
1/DNA-dependent activator of IFN-regulatory factors
(ZBP1/DAI) and cGAMP synthase (cGAS) signaling that
ultimately activates IRF-3-dependent type I IFN res-
ponse. KSHV encodes a viral interferon regulatory factor
called vIRF1, targets STING by preventing it from interac-
ting with TANK binding kinase 1 (TBK1), thereby inhib-
iting STING’s phosphorylation and concomitantly ac-
tivation, resulting in an inhibition of the DNA sensing
pathway (Ma et al., 2015). By directly binding to cGAS,
LANA encoded by KSHV inhibits the cGAS-STING–
dependent phosphorylation of TBK1 and IRF-3, and
thereby antagonizes the cGAS-mediated restriction of
KSHV lytic replication (Zhang et al., 2016). On the
other hand, production of KSHV ORF52, an abundant
gammaherpesvirus-specific tegument protein, also
subverts cytosolic DNA sensing by directly inhibiting
cGAS enzymatic activity and reducing the dimerization
and phosphorylation of IRF-3 (Wu et al., 2015). More
interestingly, in addition to viral DNA, the DNA virus
encoded RNAs can also be recognized by RNA sensors
such as RIG-I, Toll-like receptor 3 (TLR-3), which
mediates the type I IFN pathway against viral infection.
The gammaherpesviruses, including EBV, KSHV and
MHV68, each encode at least 12 microRNAs (miRNAs)
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(Feldman et al., 2014). EBV encoded small RNAs
(EBERs) can be recognized by RIG-I and TLR-3 and
induce downstream signaling pathways including phos-
phorylation of NF-κB and IRF-3, and release of inter-
leukins 6 and 10 (IL-6/10) which act as cellular growth
factors (Samanta et al., 2006; Munz, 2015; Iwakiri,
2016).

Phosphorylation-mediated viral regulation of
Interferon Regulator Factors
Upon PRR signaling by the IκB kinase (IKK)-related
kinase IKKε and TBK-1, the phosphorylation of IRF-3
and IRF-7 are critical for IRF-3 homodimerization and
translocation into the nucleus, where its interacts with
the histone acetyl transferases CBP and p300, and asso-
ciates with the IFN-β promoter. During the KSHV latent
infection, to down-regulate expression of IKKε, it has
been found that KSHV inhibits IKKε signaling by en-
coding viral miR-K12-11, and inhibiting IRF-3 phos-
phorylation in responsible for IRF-3 activation (Liang
et al., 2011). Distinct from both KSHV and MHV-68
encoded ORF36 can only bind to phosphorylated IRF3,
and inhibits the production of IFN-β (Hwang et al.,
2009), EBV encoded ORF36 (namely BGLF4 kinase)
could phosphorylates IRF-3 and inhibits the active IRF-3
recruitment to ISREs and thus suppresses the type I IFN
response (Wang et al., 2009). Similar to IRF-3, IRF-7 is
also phosphorylated by TBK1 and IKKε, which leads to
heterodimerize with IRF-3 and fully stimulate type I IFN
expression (Ning et al., 2011). It has been shown that

although ORF45 of KSHV could inhibit IRF-7 phosphor-
ylation (Zhu et al., 2002; Liang et al., 2012), the latent
membrane protein LMP1 induces the phosphorylation
and K63-linked ubiquitination of IRF7, resulting in its nu-
clear translocation and increased transcriptional activity
(Ning et al., 2008; Bentz et al., 2012). Interestingly, LMP1
is also demonstrated to promote IRF-4 phosphorylation
and markedly stimulate IRF-4 transcriptional activity
(Wang et al., 2016).

Phosphorylation-mediated viral regulation of
ISG secretion and activation
It is well known that interferon binding to its receptor
IFNAR could activate the Janus family protein kinases
(JAKs) Tyk2 and Jak1, inducing site specific phosphor-
ylation of tyrosine residues in the signal transducers and
activator of transcription STAT1 and STAT2, leading to
their activation and formation of a heterotrimeric com-
plex containing IRF-9 (known as IFN- stimulated gene
factor-3, ISGF3) (Taylor and Mossman, 2013). It has
been found that each step of this interferon-mediated
JAK/STAT signalling pathway is disrupted by herpes
viral proteins (Figure 3). For examples, EBV-encoded
the two latent membrane proteins LMP2A and LMP2B
attenuate interferon responses by targeting the IFNARs
and reducing JAK/STAT1 phosphorylation (Shah et al.,
2009). The EBV immediate-early protein, BZLF1, can
also decrease expression of the IFN-γ receptor and in-
hibit IFN-γ-induced STAT1 tyrosine phosphorylation
and nuclear translocation, suggesting a mechanism by

 

Figure 2. A schematic illustrating γ-herpesvirus mediated regulation of cellular protein phosphorylation to escape host
innate immune surveillance.
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which EBV may escape antiviral immune responses
during primary infection (Morrison et al., 2001). In con-
trast, KSHV K3 and K5 target the proximal IFN signal
transduction by downregulating IFN-γR1 surface ex-
pression which led to effective suppression of IFN-γ-
mediated STAT1 phosphorylation and transcriptional
activation (Li et al., 2007). ORF54, a functional dUTPase
from MHV-68, causes the degradation of the IFNAR1
protein independently of its dUTPase enzyme activity, and
that this degradation results in a reduction of the type I
IFN response, including the phosphorylation of STAT1
(Leang et al., 2011).

In addition, EBV LMP-1 could prevent Tyk2 phos-
phorylation and inhibits IFN-α-stimulated STAT2 nuclear
translocation and its downstream genes transcription
(Geiger and Martin, 2006). LMP1-induced tyrosine
phosphorylation of STAT1 is almost exclusively due to
the NF-κB-dependent secretion of IFNs. However, it re-
mains to be further elucidated whether this response
(which is usually considered to be antiviral) is in fact re-
quired for the EBV viral persistence (Najjar et al., 2005).
Different from EBV, KSHV ORF10 encodes a protein
called RIF and forms a complex with Jak1, Tyk2, STAT2,
and IFNAR subunits. Such complex appears to block
activation of both Tyk2 and Jak1, as well as subsequent
phosphorylation and activation of STAT1 and STAT2,
with the consequence of failure of ISGF3 accumulation
in the nucleus (Bisson et al., 2009). Moreover, KSHV
vIRF-2 attenuates the accumulation of two components
of ISGF-3: IRF-9 and phosphorylated STAT1, to inhibit
type I IFN response (Mutocheluh et al., 2011).

Once activated, ISGF3 binds to the promoters and ac-
tivates the expression of many IFN- stimulated down-
stream genes (ISGs) including genes expressing antiviral
proteins. To date, three antiviral pathways have been
well documented: the protein kinase R (PKR), the 2-5
OAS/RNaseL system and the Mx proteins (Haller et al.,
2006). Additional ISG key proteins with potentially anti-
viral activities are ISG20, promyelocytic leukemia pro-
tein (PML), guanylate-binding protein 1 (GBP-1), p56 and
RNA-specific adenosine deaminase 1 (ADAR1) (Haller
et al., 2006). Among these, PKR as a serine/threonine
kinase is also activated by dsRNA binding, and in turn
exerts the effect on subsequent autophosphorylation and
induction of apoptosis. Both KSHV and EBV individu-
ally encode EBERs and vIRF2 to bind PKR and inhibit
itself phosphorylation, and thereby prevent IFN-α-medi-
ated apoptosis (Burysek and Pitha, 2001; Samanta and
Takada, 2010). Similarly, accumulating evidence indic-
ates that PML-nuclear bodies (PML-NBs), also known
as nuclear domain 10 (ND10) or PML oncogenic do-
mains (PODs), is targeted by herpesviruses for viral tran-
scription and replication (Chang et al., 2016). In NPC
cells, it has been shown that EBNA1 disrupts PML-NB
by inducing the degradation of PML proteins, leading to
impaired DNA repair and increased cell survival. Fur-
ther studies reveal that the interaction between EBNA1
and the cellular CK2 kinase is the key, and EBNA1 in-
creases the association of CK2 with PML proteins, and
thereby induces the phosphorylation and ubiquitylation
of PML proteins for degradation (Sivachandran et al.,
2010).

 

Figure 3. Schematic representation of cytokine-mediated phosphorylation of JAK-STAT signaling pathways manipu-
lated by γ-herpesvirus.
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Phosphorylation-mediated viral inhibition of NF-
κB and inflammation
In resting cells, the inflammation responder NF-κB is
held as an inactive complex in the cytoplasm by its
inhibitor, IκBα. PRR activation stimulates IκBα phos-
phorylation and degradation, releasing NF-κB to trans-
locate to the nucleus and induce target genes (Taylor and
Mossman, 2013). Inhibition of NF-κB is employed by vi-
ruses as an immune evasion strategy which is also closely
linked to oncogenesis during gammaherpesvirus persis-
tent infection. For human KSHV and murine γHV68,
NF-κB activation is sufficient to inhibit RTA-dependent
transcriptional activation. Conversely, RTAs of KSHV
and γHV68 were also shown to induce RelA (p65, the
major component of NF-κB) degradation for blocking
NF-κB activation. This likely contributes to the efficient
lytic replication of γHV68 via evasion of antiviral cyto-
kine production (He et al., 2014). For KSHV, it not only
encodes vIRF3 to regulate the host immune system and
apoptosis via inhibition of NF-κB activity by reducing
IκB phosphorylation (Seo et al., 2004) during latent
phase, but also encodes vGPCR (viral G protein-coupled
receptor) during lytic replication to interact with and
activate IKKε to promote NF-κB subunit RelA (p65)
phosphorylation, which correlated with NF-κB activation
and inflammatory cytokine expression (Wang et al.,
2013). In addition, KSHV encoded K15 directly recruits
NF-κB-inducing kinase NIK and induces NIK-mediated
NF-κB p65 phosphorylation on Ser536 (Havemeier et al.,
2014), while KSHV encoded vFLIP (a viral FLICE inhibi-
tory Protein, encoded by the open reading frame K13)
activates the NF-κB pathway by binding to NEMO,
which results in the recruitment of IKK1/IKKα and IKK2/
IKKβ and their subsequent activation by phosphorylation
(Matta et al., 2012).

To block the activation of NF-κB-mediated inflamma-
tion pathway, EBV encoded LMP1 not only induces
IκBα phosphorylation and degradation (Gewurz et al.,
2011; Ersing et al., 2013), but also promotes RelA’s
(p65) phosphorylation and nuclear translocation (Zheng
et al., 2007). Moreover, the key latent antigen called
EBNA1 is also shown to inhibit the canonical NF-κB
pathway in carcinoma lines by inhibiting the phos-
phorylation of IKKα/β. The reduction of both IκBα and
p65 phosphorylation lead to decreased amount of p65
within the nuclear NF-κB complexes (Valentine et al.,
2010). In the EBV-infected lymphoma cells, EBNA2 is
specifically associated with upregulation of the two
chemokines CCL3 and CCL4, which enhance Btk and
NF-κB phosphorylation, and contribute to doxorubicin
resistance of B lymphoma cells (Kim et al., 2016). Given
the role of the EBV encoded BGLF4 as a potent viral
kinase, it has been revealed to phosphorylate UXT (an

NF-κB coactivator) at the Thr3 residue for blocking the
interaction between UXT and NF-κB, and in turn redu-
cing activity of NF-κB-mediated enhanceosome (Chang
et al., 2012).

Viral regulation of ATF2/c-Jun by
phosphorylation
The AP-1 (activator protein 1) transcription factor is a
dimeric complex that comprises several members in-
cluding JUN (c-Jun, JunB, and JunD), FOS (c-Fos, Fos B,
Fra1, and Fra2), ATF (activating transcription factor)
and MAF (musculo-aponeurotic fibrosarcoma) protein
families. AP-1 proteins are primarily considered to be
oncogenic, and take part in a wide range of cellular events
including cell transformation, proliferation, differentia-
tion and apoptosis. Although much less is understood
about ATF2/c-Jun, it has been documented that the c-Jun
N-terminal kinases (JNKs) is activated, and then trans-
locates into the nucleus for phosphorylating Jun proteins
in a similar way to the activation process of NF-κB (Zheng
et al., 2007). In NPC cells, EBV LMP1 could promote
the formation of c-Jun/JunB heterodimers through in-
ducing phosphorylation of c-Jun at ser63 and ser73. This
heterodimeric form can bind to the AP-1 consensus
sequence. The interaction between c-Jun and Jun B
increases the repertoire of LMP1 regulatory complexes
that could play an important role in the transcriptional
regulation of specific cellular genes in the development
of nasopharyngeal carcinoma (Song et al., 2004). In
addition, given the role of EBV immediate-early protein
BZLF1 (Zta) and BRLF1 (Rta) (two important regulatory
factors for reactivation of lytic replication), both Zta and
Rta activate the cellular stress mitogen-activated protein
(MAP) kinases, p38 and JNK, resulting in phosphoryla-
tion (and activation) of the cellular transcription factor
ATF2 (Adamson et al., 2000). In contrast, KHSV encoded
lytic protein Orf49 could induce phosphorylation and
activation of the transcription factor c-Jun, JNK and p38,
suggesting that Orf49 activates the JNK and p38 pathways
during the KSHV lytic cycle, and at least associates with
cell proliferation, differentiation, or apoptosis (Gonzalez
et al., 2006).

Virus induces cytokines via phosphorylation-
mediated activation of JAK-STAT
Cytokines play a critical role in many viral infections.
Cytokine-mediated JAK/STAT signaling controls nu-
merous important cellular processes, such as immune
response, cellular growth, and differentiation. Viruses
not only manipulate host cytokine production to favor
virus survival, replication, and infection but also help
virus-infected cells to escape the host immune response,
which potentially results in the development of cancer
(Wang et al., 2015). In the recent review (Wei et al.,
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2016), we have summarized to address how EBV and
KSHV encode their own cytokines and chemokines to
escape hose immune surveillance. To avoid the redun-
dancy, we will focus and highlight how viral phosphor-
ylation manipulates production of cytokine through
targeting JAK-STAT pathway (Figure 3). In addition to
the IFN-associated JAK-STAT pathway, KSHV and
EBV have been found to evade the immune response
through expressing their own cytokines like vIL-6 and
vIL10, respectively (Cai et al., 2010b; Cousins and
Nicholas, 2013).

STAT3 as a major downstream target of the interleukin-
6 (IL-6) and IL-10 families of cytokines, has been tar-
geted by KSHV and EBV to induce many gene products,
such as KSHV vIL-6 (Giffin et al., 2014), kaposin B (King,
2013), and viral-G-protein-coupled receptor (vGPCR)
(Burger et al., 2005), miR-K12-1 (Chen et al., 2016) and
EBV LMP-1 (Chen et al., 2003). By using the different
binding receptor from the cellular homolog, vIL-6 could
activate tyrosine phosphorylation of STAT3 via gp130-
associated JAK pathways and MAPK serine/threonine
kinase pathways (Cai et al., 2010b; Cousins and Nicholas,
2013). Meanwhile, the phosphorylation levels of STAT3
influence viral lytic reactivation in cell culture (Reddy et
al., 2016). STAT3 contributes to maintenance of latency
by curbing lytic activation of EBV and KSHV in latent
cells that express high levels of STAT3. While activated
STAT3 plays a key role in suppressing the DNA dam-
age response, which facilitates cell proliferation as well
as development of cancer (Li and Bhaduri-McIntosh,
2016). In the MHV68 animal model, it has been shown
that STAT3 expression is also required for virus to estab-
lish latency in primary B cells under the circumstance of
active immune response to infection (Reddy et al., 2016).

STAT6 is another major downstream target of tran-
scriptional factor activated by cytokine IL-4 or IL-13,
and has been demonstrated to target by EBV and KSHV.
Selectively activation of IL-4/STAT6 and IL-13/STAT6
signaling is utilized by KSHV to promote pathogenesis
and tumorigenesis during latency infection (Cai et al.,
2010a; Wang et al., 2017). Among these, LANA en-
coded by KSHV is essential for viral blocking of IL-4-
induced signaling. LANA reduces IL-4-mediated phos-
phorylation of STAT6 on Y-641 and concomitantly its
DNA binding ability (Cai et al., 2010a). However, STAT6
is constitutively activated in the PEL cells due to the se-
cretion of IL-13 and downregulation of SHP1 by KSHV
(Wang et al., 2015; Wang et al., 2017). Moreover, IL-13-
stimulated constitutively phosphorylation of STAT6 is
tightly associated with activation of JAK1 instead of PI3K
and Akt (Wang et al., 2015). However, both IL-4 and
IL-13 also activate STAT6 and induced by LMP-1 in
EBV-infected B cells (Kis et al., 2011).

FUTURE PERSPECTIVES

In the view of the fact that phosphorylation events involve
in viral replication, immune evasion and oncogenesis,
the cellular and viral kinases utilized by EBV and KSHV
may serve as targets for prophylactic and therapeutic
treatments of viral infections. Some kinase-inhibitory
compounds, including nucleoside analogues, tyrosine
kinase inhibitor, Serine Threonine kinase inhibitor, have
previously been successful in treating various cancers,
and researches are ongoing to determine their efficacies
against viral infections (Keating and Striker, 2012).

To date, a number of nucleoside analogues, such as
acyclovir and ganciclovir, have been developed in order
to exploit these viral kinases for therapeutic purposes.
These nucleoside analogues are first phosphorylated by
viral kinases and subsequently phosphorylated by cellu-
lar kinases to form nucleoside triphosphates. In general,
the nucleoside analogues will inhibit viral DNA replica-
tion and thus decrease herpes viral replication (Keating
and Striker, 2012). Among these, the potential develop-
ment of tyrosine kinase inhibitors as a safe and effective
prophylactic and therapeutic treatment against poxvir-
uses is a point of interest in current research (Schang, 2006),
including the Abl- and Kit-specific imatinib which se-
lectively inhibits the tyrosine kinases Abl and c-kit (Koon
et al., 2005). Taking these concepts even further, Koon
and colleagues demonstrated that imatinib is also active
against the pathogenesis of KSHV-induced Kaposi’s sar-
coma (Schang, 2006). The two serine/threonine kinase
inhibitors of the cellular mTOR kinase, Sirolimus and
everolimus (rapamycin), have been shown to success-
fully treat some of Kaposi’s Sarcoma (KS) but not all in the
transplant patients (Campistol et al., 2004; Stallone et al.,
2005; Stallone et al., 2008). In addition, some NF-κB in-
hibitors have also presented antiviral and antitumor func-
tion. For instances, the NF-κB inhibitor BAY11-7082
could induce PEL cells apoptosis, and Diallyl trisulfide
(DAT) could suppress the production of viral progeny
from PEL cells (Shigemi et al., 2016). Celastrol, a TAK1/
NF-κB inhibitor, has also presented as a potential thera-
peutic molecule to ameliorate vGPCR/KSHV-induced
tumors (Bottero et al., 2011). As an inhibitor of Pim
kinases, the chemical compound tricyclic benzo and its
derivative were shown to dramatically reduce the mo-
tility and proliferation of EBV transformed lymphoblast-
oid cells (Kiriazis et al., 2013). Similar effect was also
observed on KSHV-induced lymphoma cells (Sarek et al.,
2013). In summary, based on the recent understanding of
molecular regulatory modes of phosphorylation events
targeted by EBV and KSHV, and their potential chemical
compounds discovered, we believe that safe and effective
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prophylactic and therapeutic strategies against their re-
lated cancers will be achieved in near future.
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