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Chapter 16
Interplay Between Microenvironmental 
Abnormalities and Infectious Agents 
in Tumorigenesis

Qing Zhu, Feng Gu, Caixia Zhu, Yuyan Wang, Fang Wei, and Qiliang Cai

Abstract  Emerging evidence has shown that the cell of microenvironmental abnor-
malities is a key factor that controls many cellular physiological processes including 
cellular communication, homing, proliferation, and survival. Given its central regu-
latory role, it is therefore not surprising that it is widely exploited by infectious 
agents for inducing pathogenesis. In the past decade, a number of oncogenic patho-
gens including viruses, bacteria, and parasites are demonstrated to take advantage of 
the tumor microenvironmental factors including hypoxia, oxidative stress, and cyto-
kines, to create an extracellular environment more favorable for pathogen survival 
and propagation and escape from the host immune surveillance. Here we summa-
rize and highlight the current understanding of the interplay between common 
tumor microenvironmental factors and oncogenic pathogens in promoting 
tumorigenesis.
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16.1  �Introduction

Oxygen and glucose are not only essential nutrients but also key microenvironment 
factors to maintain cell survival. Imbalance between nutrients supply and demand 
can lead to nutrient stress within regions of tumor tissues. The growth of solid 
tumors, which are significantly different from the normal tissues, possesses the 
characteristic of rapid expansion of tumor mass and chaotic growth of tumor vascu-
lature [1, 2]. Thus, excessive metabolism rate of tumor cells and insufficient blood 
supply could profoundly influence the tumor microenvironment where forms 
hypoxia and glucose starvation. To survive in hypoxia and glucose starvation stress, 
tumor cells have evolved strategies of adaptive cellular response by acting on vari-
ous signaling pathways that are responsible for angiogenesis, glucose metabolism, 
cell proliferation, and apoptosis [3, 4]. Importantly, increasing evidence suggests 
that these adaptive strategies in cancer cells profoundly drive tumor growth and 
aggressive progression [1, 4, 5]. In addition, the consequence of limitation on the 
uptake of oxygen and glucose has also been shown to associate with the physio-
chemistry change within tumor microenvironment such as increase of acidic (H+) 
concentration and ROS production [6]. Conversely, these physiochemistry changes 
acting as a selective stress influence cellular signaling pathways and can be exploited 
in tumorigenesis. Together, nutrient stress (hypoxia or glucose starvation) in syner-
gizing with the accompanied production of metabolites constitutes a unique tumor 
microenvironment where it produces a potent selective stress in driving 
carcinogenesis.

Distinct from noninfectious agent-associated cancer, pathogen–host interaction 
has been causally demonstrated in the carcinogenesis of pathogen-associated cancer 
[7]. The hemostasis of both extracellular and intracellular metabolic environment is 
equally essential for oncogenic pathogen survival, especially for virus that abso-
lutely relied on cells for living. Whether these oncogenic pathogens are directly 
capable of sensing changes in extracellular or intracellular microenvironment 
remains to be exploited. However, the factors including low oxygen and ROS gen-
eration have been indicated to influence virus replication and virions production [8]. 
On the other hand, emerging evidence has also suggested that many oncogenic 
pathogens participate in modulating key signaling pathways and gene expression 
that triggered cellular response to metabolic stress. The adaptive genetic alteration 
of signaling pathways by oncogenic pathogens may reflect the interaction between 
pathogen-associated cancer cells and tumor microenvironment. Therefore, it is 
highly possible that some of these oncogenic pathogens have evolved their own 
unique adaptive mechanisms. The pathogen-specific subversion response of signal-
ing pathway not only facilitates the survival of infected cells under stress but also 
promotes pathogen-mediated oncogenesis. Hence, the understandings of these 
pathogen-associated critical signaling pathways in adaption to hypoxia and glucose 
starvation stress will not only expand the oncogenesis mechanism induced by 
pathogen in a microenvironment base but will also favor the identification of both 
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pathogen and microenvironment based on potential therapeutic targets for the treat-
ment of pathogen-associated cancer (Fig. 16.1).

In this review, we summarize the key cellular adaptive signaling pathways that 
are modified by oncogenic pathogens and highlight the common or unique mecha-
nisms utilized by these oncogenic pathogens for oncogenesis.

16.2  �Pathogen-Mediated Alteration of Hypoxic Signaling 
and Response to Hypoxic Stress

Cellular oxygen homeostasis is highly dependent on the regulation of oxygen-
sensitive signaling pathway. Accumulated evidence has strongly shown the acti-
vated oxygen-sensitive signaling is the first line to respond to hypoxic stress within 
tumor microenvironment [9–11]. Activations of hypoxia-inducible factor 1 (HIF-1) 
and HIF-dependent downstream gene are the master regulatory pathway during 
hypoxia. In addition, mTOR kinase signaling pathway and unfolded protein 
response (UPR) are another two oxygen-sensitive signaling that are individually 
activated under the condition of severe and durative hypoxia stress [11]. Therefore, 
it is not surprising that most oncogenic pathogens are involved in the deregulation 
of key molecules in controlling these hypoxic signaling pathways.

Fig. 16.1  Schematic representation of microenvironmental abnormalities including immune 
(immune cells, cytokines, and chemokines) and nonimmune (extracellular matrix, stromal cells, 
blood vessels) components associated with infectious agents (virus, bacterium, and parasite)
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16.2.1  �Deregulation of HIF-Dependent Hypoxic Signaling

HIF-1, which consists of a constitutively expressed β-subunit and an inducible 
α-subunit, is a central transcriptional factor of HIF-dependent signaling in response 
to hypoxia stress [12]. The modulation of HIF-1 is mainly through the stability and 
availability of the inducible subunit HIF-1α. The stabilization of HIF-1α is oxygen-
dependent and is tightly regulated in the presence of oxygen [13]. More recently, it 
has been proven that many oncogenic viruses can directly enhance the accumulation 
of HIF-1α and promote its transcriptional activity through various mechanisms even 
in normoxia [14]. Given the role of HIF-1α in inducing the expression of proangio-
genic factors, the subversion of HIF-1-dependnent angiogenesis has been deeply 
involved in oncoprotein-stimulated tumor angiogenesis.

16.2.1.1  �Synthesis of HIF-1α Protein

Activation of growth factor signaling pathways including MAPK signaling, PI3K/
Akt signaling, and TSC/mTOR signaling has been indicated to be involved in the 
synthesis of HIF-1α protein [15]. Several oncogenic viruses have been found to 
hijack these signaling pathways to enhance the synthesis of HIF-1α protein in 
hypoxia or normoxia. For instance, KSHV vGPCR-mediated paracrine secretion 
can activate TSC/mTOR signaling and mTOR-dependent upregulation of HIF-1α/
HIF-2α [16]. Similarly, EBV-encoded latent membrane protein LMP-1 is also 
shown to induce the activation of p42/p44 MAPK signaling pathway to promote the 
synthesis of HIF-1α proteins [17], and HPV16-encoded E6 associate with ERK1/2 
signaling pathway to enhance HIF-1α accumulation [18]. In addition, some viral 
oncoproteins are shown to regulate HIF-1α at a transcription level. For example, 
HTLV encodes Tax to promote the expression and DNA-binding activity of HIF-1α 
by means of activating PI3K/Akt signaling [19]. EBV-encoded LMP-1 is also shown 
to enhance the stability of HIF-1α RNA transcripts through ERK1/2 and STAT3 
signaling targeting the expression of RNA-destabilizing proteins TTP and PUM2 
[20].

16.2.1.2  �Stability of HIF-1α Protein

The accumulation of HIF-1α protein not only depends on the constitutive synthesis 
of HIF-1α but also requires the modulation of HIF-1α degradation. The degradation 
of HIF-1α is primarily induced by PHD/HIF/VHL pathway in an oxygen-dependent 
manner [21, 22]. The tumor suppressor VHL acts as an E3 ubiquitin ligase to induce 
prolyl-hydroxylated HIF-1α for ubiquitylation and in turn proteasomal degradation. 
The hydroxylation of HIF-1α in the specific proline residue is mediated by oxygen-
sensor prolyl hydroxylase (PHD) enzymes. Interestingly, increasing evidences have 
shown that oncogenic viruses have exploited diverse strategies to interfere PHD/
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HIF/VHL pathway. For instance, both KSHV-encoded LANA and EBV-encoded 
LMP-1 have been demonstrated to induce the proteasome-mediated degradation of 
HIF-1α suppressor. LANA can stimulate the degradation of HIF-suppressor VHL 
and p53, which is dependent on the recruitment of Cul5-Elongin BC complex by the 
cytokine signaling-box motif within LANA [23]. In contrast, LMP-1 can induce the 
degradation of oxygen-sensor PHD1 and PHD3 via recruitment of Siah1 E3 ubiqui-
tin ligase [24]. Distinct from LANA and LMP-1, KSHV-encoded IFN-regulatory 
factor 3 (vIRF3), a viral homologue of cellular IRF gene, can stabilize HIF-1α pro-
tein through forming a complex with HIF-1α, although the machinery of the inhibi-
tion of HIF-1α degradation remains unclear [25]. The EBV oncoproteins EBNA3 
and EBNA5 are shown to bind to PHD1 and PHD2 for blocking the hydroxylation 
of HIF-1α [26]. Interestingly, in order to stabilize HIF-1α, the HBV-encoded HBx 
not only blocks the formation of VHL-HIF complex but also induces interaction 
between MTA1/HDAC and HIF-1α to promote the deacetylation of HIF-1α within 
the oxygen-sensitive domain [27, 28].

16.2.1.3  �Transcriptional Activity of HIF-1α

In addition to the accumulation of HIF-1α protein, the regulators of HIF-1α tran-
scriptional activity including nuclear translocation, and interaction with coactiva-
tors, DNA-binding capacity also plays a critical role in activating HIF signaling, 
which is targeted by different viral proteins [29]. For example, KSHV-encoded 
LANA and vIRF3 have been reported to promote nuclear accumulation of HIF-1α 
[23]. EBV oncoprotein LMP-1 enhances DNA-binding ability of HIF-1α to hypoxia-
responsive DNA elements within the VEGF promoter [17], while HBx enhances the 
transcriptional activity of HIF-1α through the activation of p42/p44 MAPK signal-
ing, leading to the interaction between HIF-1α and coactivator CREB-binding pro-
tein [30]. In addition, some viral oncoproteins are also involved in stimulating 
HIF-1α activity through posttranslational modification. For instance, the p38/
MAPK signaling activated by KSHV vGPCR can phosphorylate HIF-1α and 
enhance its transcriptional activity [31], and HPV E7 prevents deacetylation of 
HIF-1α through dissociation with histone deacetylases HDAC1, HDAC4, and 
HDAC7 [32].

16.2.2  �Deregulation of HIF-Independent mTOR Signaling

It has been demonstrated that the adaptive response to hypoxia stress involves not 
only stimulation of angiogenesis but also inhibition of protein synthesis [33]. mTOR 
kinase signaling pathway, as a central regulator of protein synthesis that integrates 
various physiological signals [34], has been shown to respond to hypoxia and 
restrain the growth of tumor [33]. mTOR-mediated protein synthesis is a process 
involving the phosphorylation of the eukaryotic initiation factor 4E binding protein 
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1 (4E-BP1) and the p70 ribosomal S6 kinase 1(S6K1) [34]. These two are critical 
effectors of the downstream of mTOR signaling and responsible for the initiation 
process of translation. It has been shown that inhibition of mTOR by hypoxia 
involves three hypoxia-inducible proteins REDD1, BNIP3, and PML [35–37]. Both 
REDD1 and BNIP3 can directly suppress mTORC1 activity by disrupting Rheb-
mTOR interaction, whereas REDD-mediated downregulation of mTORC1 by 
hypoxia is dependent on TSC1/TSC2 complex (a negative regulator of mTOR). In 
view of the fact that the deregulation of mTOR signaling appears in many advanced 
cancers [38, 39], the constitutive activation of mTOR could be an adaptive strategy 
in response to hypoxia. Intriguingly, a growing number of evidence has shown the 
positive regulation of mTOR activity by several oncogenic viruses. For instance, 
HPV16-encoded E6 and HBV-encoded HBx are shown to target TSC1/TSC2 com-
plex for stimulating protein synthesis. Moreover, HPV16 E6 not only induces the 
activation of mTOR/SK61 signaling, which is dependent on the disruption of TSC2 
by E6-tuberin interaction and the proteasomal degradation of tuberin [40], but also 
enhances Atk/mTOR activity to initiate cap-dependent translation [41]. For HBV, 
the overexpression of HBx activates TSC1/mTOR/SK61 signaling by means of 
IKKβ [42]. Meanwhile, HCV NS5A-mediated activation of mTOR presents a posi-
tive effect on two key translation initiation-associated proteins S6 K1 and 4EBP1, 
by which NS5A promotes the dissociation of FKBP38 from mTOR by competitive 
binding to mTOR [43, 44]. This indicates to some extent that activation of mTORC1 
and protein synthesis could be potent strategies targeted by oncogenic viruses in 
response to hypoxia. Nonetheless, the increasing severity and duration of hypoxia 
will conversely cause the suppression of protein synthesis in most cells. Therefore, 
the mTOR signaling is also a critical regulator in hypoxia toleration. However, 
whether the subversion of mTOR signaling by oncogenic virus for carcinogenesis 
will still benefit to the survival of tumor cells during severe hypoxia remains elusive. 
It is likely that the oncogenic virus will shift the regulatory mechanism of mTOR 
signaling or constitutively activate mTOR-dependent protein synthesis to promote 
viral replication in response to sever hypoxia.

16.3  �Pathogen-Mediated Alteration of ROS Signaling 
and Response to Oxidative Stress

Mounting evidence has indicated the excess generation of intrinsic or extrinsic ROS 
in cancer cells. It has been proven that several factors including mitochondrial dys-
function and oncoprotein activity contribute to the accumulation of ROS [45]. In 
tumor microenvironment, hypoxia stress and glucose starvation have been clearly 
linked to the induction of intracellular ROS production [46, 47]. The constitutive 
production of ROS (i.e., hydroperoxides) and the consequence of oxidative stress 
will cause DNA damage and genomic instability and trigger the normal cell death 
signaling. To date it is well known that oxidative DNA damage caused by ROS will 
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activate p53 signaling through the enhancement of p53 stability and DNA-binding 
activity [48], which is tightly modulated by negative regulator MDM2 (an ubiquitin 
E3 ligase) and ATM (an important sensor of DNA damage) [49, 50]. Different from 
the effect on normal cells, it has been well established that the oxidative stress in 
microenvironment profoundly contributes to tumor progression by affecting cell 
proliferation, apoptosis sensitivity, and genome stability [45]. Therefore, adaptive 
genetic change to subvert the death signaling induced by oxidative stress has evolved 
in tumorigenesis.

Since the tumor suppressor p53 is demonstrated as a central regulator in both cell 
cycle arrest and apoptosis and is potently activated in response to oxidative stress 
[51], several viruses have been found to evolve an adaptive mechanism to directly 
block p53 function. For example, the expression of vIRF1 encoded by KSHV can 
attenuate ATM/p53-mediated DNA damage response through directly blocking 
ATM-mediated phosphorylation of p53 on serine 15 which in turn increases the 
degradation of p53 by MDM2. In addition, vIRF1 can also reduce the transcrip-
tional activation of p53 [52]. In contrast, EBV-encoded lytic protein BZLF-1 can 
induce the degradation of p53 in ATM-dependent DNA damage response which is 
independent of MDM2 [53]. The deregulation of p53-dependent oxidative stress 
response is also found in HCV infection. The overexpression of DHCR24 induced 
by HCV infection can suppress the activation of p53 through the accumulation of 
p53-MDM2 complex, although the specific viral protein involved in this process 
remains unknown [54]. In addition, KSHV-encoded LANA and some structural 
proteins expressed during the late stage of lytic replication have been found to 
inhibit p53-mediated apoptosis [55, 56]. Both EBV nuclear antigen 3C and viral 
oncoprotein LMP-1 have also been shown to be involved in repressing p53-induced 
apoptosis and transcriptional activity [57–59]. However, despite that the activation 
of p53 signaling has been linked to multiple types of DNA damage, how p53 is 
regulated by viral oncogene and in turn responsible for oxidative DNA damage is 
still elusive and requires to be further investigated.

16.4  �Cross Talk Between Pathogens and Cytokines in Tumor 
Microenvironment

Cytokines and chemokines, existing in tumor microenvironment, are a series of 
small proteins that exert great effects on host response to pathogen infection. Despite 
antiviral activity induced by cytokines and chemokines, extensive evidence demon-
strates that some pathogens, especially oncogenic viruses and bacteria, utilize cyto-
kines and chemokines to promote tumor progression [60, 61]. Here, we summarized 
and highlighted several cytokines and chemokines that play a vital role in tumori-
genesis during infection of oncogenic pathogens (Fig. 16.1).
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16.4.1  �IL-6

Interleukin 6 (IL-6), secreted by a variety of host cells such as T cells, macrophages, 
fibroblasts, and malignant cells, is a multifunctional inflammatory cytokine, induc-
ing various biological effects including tumorigenesis [62]. Increasing evidence 
indicates that IL-6 has a strong link with pathogen-mediated carcinomas. For exam-
ple, it has been found that IL-6 acts as an autocrine growth factor targeted by EBV 
to promote immortalization of B cells and tumor growth [63–65]. In contrast, KSHV 
encodes viral IL-6 (vIL-6), sharing about 25% homology with human IL-6 (hIL-6). 
Different from hIL-6, vIL-6 stimulates almost each type of cells through directly 
binding to gp130 without hIL-6 receptor [66]. vIL-6 is able to promote the growth 
and survival of PEL cells and tumorigenesis of nude mice [67, 68]. Blockading 
vIL-6 expression or neutralizing antibody against gp130 could efficiently inhibit the 
growth of PEL cells [69, 70]. Further studies revealed that vIL-6 blocks IFN signal-
ing, which contributes to tumor cell proliferation [71]. In addition, miRNA K12-1, 
a viral miRNA encoded by KSHV, was found to activate NF-κB/IL-6/STAT3 path-
way to promote tumorigenesis [72]. In the HPV-associated cervical cancer, recent 
studies reported that IL-6/STAT3 is activated by the E6 oncoprotein encoded by 
high-risk HPV for tumorigenesis [73, 74], while HBV-encoded X protein modulates 
IL-6 to promote the progression of liver cancer [75]. In the HTLV-1-associated 
T-cell malignancy, the viral protein Tax is shown to enhance the expression of IL-6 
receptor and leads to the malignant growth of T cells [76]. In the bacterium-
associated cancers, Helicobacter pylori, a gram-negative microaerophilic bacteria, 
is found to parasitize in the stomach and results in chronic gastritis that is intensely 
associated with gastric neoplasm [77]. Several reports indicated that the interplay 
between H. pylori and TLR2 induces the expression of IL-6 and subsequently acti-
vates IL-6/STAT3 signaling pathway, which strongly contributes to immortality of 
gastric cancer cells. Interestingly, TLR2 is also directly upregulated by STAT3 in 
gastric tumors [78–81]. Therefore, TLR2/IL-6/STAT3 pathway may form a positive 
loop to promote gastric tumorigenesis [77].

16.4.2  �IL-10

Interleukin 10 (IL-10), initially identified as an inhibitor of cytokine synthesis, has 
been shown to play a vital role in regulating cell differentiation and immune 
response, including limiting inflammatory response to pathogens and thereby reduc-
ing damage to host [82, 83]. However, it is also reported that IL-10 is utilized by 
various viruses to favor viral survival and pathogenesis, among which some even 
encode IL-10 homologs. For instance, EBV encodes vIL-10, imitating biological 
activities of cellular IL-10, to inhibit cytokine synthesis and regulate immune 
response [83]. In addition, vIL-10 prevents EBV-infected B cells from being elimi-
nated by NK cell and protects antigen-specific T-cell proliferation by 
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downregulating MHCII antigen on monocytes and ultimately maintains EBV latent 
infection [84, 85]. On the other hand, human IL-10 (hIL-10) expression is also 
induced in the EBV-infected B cells. Evidence shows that hIL-10 is upregulated by 
latent membrane protein 1(LMP-1) via p38/SAPK2 pathway [86]. Another mecha-
nism study revealed that EBV transcription factor Zta, previously recognized as a 
master regulator of EBV productive cycle, is also involved in the expression of hIL-
10 [87]. Furthermore, EBV-encoded small RNA, EBER, was found to induce hIL-
10 through RIG-I-mediated IRF3 pathway [88]. For another herpesvirus, KSHV 
was found to force PEL cells to release hIL-10 into culture supernatant. Moreover, 
neutralizing antibodies against IL-10 and IL-10 receptor shows that IL-10 is critical 
for the progression of PEL [67]. In the HPV-associated malignant cervical cancer, 
HPV drives immune cells to produce IL-10 to facilitate viral persistence and tumor-
igenesis [89]. During chronic HBV infection, high production of IL-10 suppresses 
the biological activity of CD8+ and CD4+ T cells, which favors the progression of 
tumorigenesis [90, 91]. Recently, it has been found that HTLV-1 bZIP factor (HBZ) 
upregulates T-cell immunoglobulin and ITIM domain (TIGIT) and enhances expres-
sion of IL-10 for evading host immune response [92].

16.4.3  �IL-13

Interleukin 13 (IL-13) is known as inflammation regulatory factor, mainly generated 
by B cells, T cells, and NK cells [93]. The main function of IL-13 is to induce IgE 
switching and CD23 expression in B cells, promoting antigen presentation ability of 
MHCII, inhibiting inflammation in human monocytes, and suppressing apoptosis 
[94–97]. Increasing evidence has shown that IL-13 collaborates with various viruses 
including EBV, KSHV, and HTLV-1 to promote tumorigenesis [61, 98–101]. In the 
EBV-associated Hodgkin lymphoma, the expression of IL-13 is upregulated, and 
the underlying molecular mechanism is that Zta serving as a EBV lytic protein elic-
its IL-13 production via directly binding to IL-13 promoter. Furthermore, neutral-
izing antibody against IL-13 suggests that IL-13 is vital for proliferation and latency 
of EBV-immortalized lymphoblastoid cell lines [98]. STAT6, a key downstream 
effector of IL-13, is a remarkable transcriptional factor whose constitutive phos-
phorylation has been indicated in controlling tumorigenesis [102]. Our group found 
that the constitutive phosphorylation of STAT6 is due to autocrine/paracrine of 
IL-13 and downregulation of SHP1 mediated by KSHV, which is closely associated 
with oncogenesis. Strikingly, neutralizing antibody against IL-13 suppresses the 
proliferation and survival of PEL, suggesting IL-13 plays a significant role in 
KSHV-associated latency and subsequent tumorigenesis [61]. Though previous 
studies reveal that IL-4, sharing the same receptor IL-4Rα/IL-13Rα1 with IL-13, 
also leads to the phosphorylation of STAT6, we found that IL-4/STAT6 pathway is 
negatively regulated in the KSHV-infected cells through dephosphorylation of 
STAT6 by latency-associated nuclear antigen (LANA), an important viral oncopro-
tein for maintaining viral latency [103, 104]. Similar to the effect of EBV and 
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KSHV, HTLV-1 Tax protein also induces production of IL-13, which is capable of 
promoting cell proliferation and anti-apoptosis of infected cells in an autocrine 
manner [96, 97, 99, 105]. This indicates that IL-13 is often targeted by oncogenic 
virus for host immune escape and cell survival.

16.4.4  �IL-8

Chemokines are a large family of small proteins that regulates inflammation. The 
main property of chemokines is to attract immune cells to the site of inflammation, 
resulting from various causes including infection, autoimmune disease, and carci-
nomas [106]. Interleukin 8 (IL-8), a member of CXC chemokine subfamily, is 
responsible for recruiting neutrophils and T lymphocytes to the site of inflamma-
tion. Extensive evidence demonstrates that IL-8 is closely implicated in tumorigen-
esis such as breast cancer, gastric cancer, and pancreatic cancer [107–109]. Thus, it 
is not surprising that IL-8 was also found to participate in pathogen-related tumori-
genesis. For example, EBV-encoded Zta protein activates IL-8 through binding to 
two elements within IL-8 promoter and subsequently upregulates IL-8 production, 
which is crucial for NPC development by recruiting infiltrates around infected cells 
[110]. In contrast to EBV, KSHV adopts different mechanisms to regulate IL-8 
expression. It has been demonstrated that LANA-1 boosts IL-8 production to assist 
KSHV-infected cells in evading host immune response [111]. Similarly, in the con-
text of lung adenocarcinomas, HPV16 infection upregulates IL-8 expression and in 
turn promotes angiogenesis and metastasis through inducing MMP2 and MMP9 
[112], while the downregulation of IL-8 in the HPV-immortalized exocervical cells 
or primary keratinocytes could create a favorable microenvironment for HPV infec-
tion and subsequent tumorigenesis [113, 114]. In addition, previous studies showed 
that HCV infection could upregulate IL-8 expression and contribute to host immune 
tolerance and viral pathogenesis [115]. Interestingly, the similar phenomenon 
occurs to HBV, which was found to increase viral tolerance to IFN-α by inducing 
IL-8 production [116]. HTLV-1 also encodes Tax oncoprotein to activate IL-8 pro-
duction and in turn contribute to HTLV-1-associated pathogenesis [117]. In bacteria-
associated cancer, the discoveries from gastric epithelial cells exposed to 
Helicobacter pylori indicate that bacterial infection could also upregulate the 
expression of IL-8. The fact that high production of IL-8 is tightly associated with 
tumor cell proliferation, angiogenesis, and metastasis suggests that IL-8 plays a key 
role in H. pylori-associated gastric cancer [118–121].
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16.4.5  �CCL20

CCL20 is a member of CC chemokine subfamily and acts as a potent chemotaxin of 
immature dendritic cells, B lymphocytes, and T lymphocytes [122]. The main char-
acteristic of CCL20 is to recruit immune cells to the site of inflammation, and in 
turn it is also involved in host immune response and tumorigenesis, such as breast 
adenocarcinoma, hepatocellular carcinoma, and pancreatic cancer [123–125]. Many 
reports have indicated that CCL20 is connected with pathogen-related tumorigene-
sis. For instance, in the EBV-positive Burkitt lymphoma (BL) cells or EBV-negative 
cells overexpressing LMP-1, the production of CCL20 is highly upregulated, indi-
cating viral oncoprotein LMP-1 is involved in inducing chemokine CCL20 [126]. In 
addition, CCL20 is also upregulated by another EBV latent antigen called EBNA1 
[127]. Further studies showed that high-level CCL20 could recruit Treg and is capa-
ble of inhibiting CD4+ and CD8+ T cells [127, 128]. By which, EBV-infected cells 
can inhibit host immune response and may promote tumorigenesis. Similarly, over-
expressions of CCL20 and its receptor CCR6 are also observed in both KSHV-
positive cells and HTLV-1-infected cells, which may drive virus-infected cells to 
migrate in an autocrine or paracrine manner. In contrast, high-risk HPVs were also 
found to escape immune response by downregulating CCL20 through E6 and E7 
proteins [129].

16.5  �Remarks and Perspectives

It is well known that metabolic stress within solid tumors is characterized by 
hypoxia, nutrient deprivation, oxidative stress, and lactic acidosis as a hostile micro-
environment for the survival of cancer cells. Nonetheless, these adverse microenvi-
ronments have been successfully exploited by cancer cells and have been converted 
as driving force in the initiation and progression of cancer. The same cases have 
been extended to the mechanism by which oncogenic pathogen utilized to involve 
in carcinogenesis. Here, we have summarized the potential roles of metabolic stress 
like hypoxia, glucose starvation, and ROS accumulation in promoting viral 
oncoprotein-induced adaptive signaling change and oncogenesis. Among these, 
extracellular lactic acidosis has also been confirmed as a potent metabolic stress 
that plays a multiple role in promoting cancer progression. However, rare informa-
tion was reported about the interaction between oncogenic pathogens and lactic 
acidosis stress. In addition, the consequence of the interplay between oncogenic 
pathogen and metabolic stress microenvironment is complicated and elusive. For 
examples, although the metabolic stress environment could drive tolerance change 
of cancer cells, the adaptive response strategies exploited by virus may not stable 
but adjust to the severity and duration of metabolic stress. On ther other hand, the 
metabolic stress factors are not isolated but cross talked, which may imply a coop-
erative or opposed effect of these selective stress on the same viral-mediated 
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adaptive signaling pathway. Thus, a dynamic and comprehensive perspective in 
understanding oncogenesis mechanism induced by microenvironment abnormali-
ties and oncogenic pathogen interaction will facilitate the development of a precise 
pathogen-specific therapeutic strategy.

Cytokines and chemokines are crucial factors that benefit not only hosts but also 
viruses. For hosts, cytokines and chemokines play a key role in regulating immune 
system, in order to limit and eliminate harmful pathogens. In contrast, for patho-
gens, many of them would adopt various mechanisms to evade host immune 
response by manipulating cytokines and chemokines. Moreover, many pathogens, 
in particular oncogenic viruses, even utilize cytokines and chemokines to promote 
persistent infection, even tumorigenesis [60]. In recent years, increasing evidence 
demonstrates the strong relationship between pathogens and carcinoma, and more 
and more cytokines and chemokines are proved to participate in pathogen-associated 
tumorigenesis, whereas the potential related to underlying mechanisms remains to 
be fully understood. As research exploited, more knowledge about virus-mediated 
tumorigenesis by manipulating cytokines and chemokines will be unveiled, and this 
knowledge could potentially be utilized to design therapies to defeat pathogen-
related malignancies.
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